Types of Number - Key Vocabulary			Examples
1	Prime number	A whole number greater than one that has exactly two factors.	2 (factors 2,1) 3 (factors 3,1) 37 (factors 37,1) 51 is not prime (factors 51,17,3,1)
2	Prime numbers 1- 20	$\begin{aligned} & 2,3,5,7, \\ & 11,13, \\ & 17,19 \end{aligned}$	
3	Factor	Any whole number that divides exactly into another number leaving no remainder.	Factors of 20 are: 1, 2, 4, 5, 10, 20
4	Multiple	The result of multiplying a number with a whole number (times tables!)	Multiples of 8: 8, 16, 24, 32, 40,
5	Lowest Common Multiple (LCM)	The LCM of 2 or more numbers is the smallest number that is a multiple of each of those numbers.	The LCM of 8 and 12 is 24.
6	Highest Common Factor (HCF)	The HCF of 2 or more numbers is the largest number that is a factor of each of those numbers.	The HCF of 18 and 30 is 6.
7	Prime factor	A factor that is also a prime number.	Factors of 12 are 1,2,3,4,6 and 12; 2 and 3 are prime factors
8	Prime factor decomposition	The process of expressing a number as a product of factors that are prime numbers. Also called product of prime factors.	$24=2 \times 2 \times 2 \times 3$ or $2^{3} \times 3$
9	Product	The result of multiplying one number by another.	The product of 2 and 3 is 6 since $2 \times 3=6$
Decimals \& Rounding - Key Vocabulary			Examples
10	Significant figures	The total number of digits in a number, not counting zeros at the beginning or the end of a number.	345000 has 3 significant figures 0.3047 has 4 significant figures
11	Estimate	Find a rough or approximate answer by calculating with numbers rounded to one significant figure.	$2.3 \times 18.4 \approx 2 \times 20=40$
12	Upper Bound	The highest value that would be rounded down to a number.	A number, n, is rounded to 5.3 to 1 decimal place.
13	Lower bound	The lowest value that would be rounded up to a number.	Upper Bound $=5.35$ Lower Bound $=5.25$
14	Error interval	The range of values (between the upper and lower bounds) in which the precise value could be.	Error interval is: $5.25 \leq n<5.35$
15	Truncate	A method of approximating a decimal number by dropping all decimal places past a certain point without rounding.	3.14159265 can be truncated to 3.1415
Indices - Key Vocabulary			Examples
16	Square number	The result of multiplying a number by itself. It will always be positive.	$4 \quad 88 \quad 2^{2} \text { or } 2 \times 2=4$
17	First fifteen square numbers	$\begin{aligned} & 1,4,9,16,25,36 \\ & 49,64,81,100,121,144 \\ & 169,196,225 \end{aligned}$	9 3 or $3 \times 3=9$ 16 888 888 4^{2} or $4 \times 4=16$
18	Cube number	The result of multiplying a number by itself, then itself again.	
19	First six cube numbers	1, 8, 27, 64, 125, 216	
20	Square root	The opposite of squaring a number to find the original factor.	$\sqrt{9}=3 \text { or }-3$ Since $3^{2}=9$ and $(-3)^{2}=9$
21	Cube root	The opposite of cubing a number to find the original factor.	$\sqrt[3]{64}=4$ Since $4^{3}=64$ Note: $(-4)^{3}=-64$ so $\sqrt[3]{64} \neq-4$

22	Index notation	The notation in which a product such as axaxax $a=a^{4}$ where the number 4 is called the index (plural indices) and the number represented by a is called the base number.	
23	Multiplying indices	$a^{n} \times a^{m}=a^{n+m}$ Same base numbers, ADD the indices.	$a^{3} \times a^{5}=a^{3+5}=a^{8}$
24	Dividing indices	$a^{n} \div a^{m}=a^{n-m}$ Same base numbers, SUBTRACT the indices.	$a^{6} \div a^{2}=a^{6-2}=a^{4}$
25	Indices with Brackets (2 indices)	$\left(a^{n}\right)^{m}=\mathrm{a}^{\mathrm{n} \times \mathrm{m}}$ MULTIPLY the indices	$\left(a^{4}\right)^{3}=\mathrm{a}^{4 \times 3}=a^{12}$
26	Indices with Brackets (coefficient and a variable)	$(a b)^{n}=a^{n} \times b^{n}=a^{n} b^{n}$ Raise each number or variable to the same index	$\begin{aligned} & (a b)^{3}=a^{3} \times b^{3}=a^{3} b^{3} \\ & (2 c)^{4}=2^{4} \times c^{4}=16 c^{4} \end{aligned}$
27	Index of zero	$a^{0}=1$ Any number or variable to the index of zero equals 1.	$8^{0}=1$
28	Hidden index of 1	Every number has an index.	3 is actually 3^{1}.
29	Fractional index	A fractional index represents a root.	$\mathrm{x}^{1 / 2}=\mathrm{V} \mathrm{x}$
30	Reciprocal	The reciprocal of a number is 1 divided by the number. The reciprocal is shown as $\frac{1}{x}$, or x^{-1} Any non-zero number multiplied by its reciprocal is equal to one.	Reciprocal of 4 is $\frac{1}{4}$ since $4 \times \frac{1}{4}=1$ Reciprocal of $\frac{3}{5}$ is $\frac{5}{3}$ since $\frac{3}{5} \times \frac{5}{3}=1$
31	Negative index	A negative index represents the reciprocal.	$x^{-1}=\frac{1}{x}$
Fractions - Key Vocabulary			Examples
32	Proper fraction	The numerator is smaller than the denominator.	$\frac{3}{8}$
33	Improper Fraction	The numerator is greater than or equal to the denominator.	$\frac{7}{2}$
34	Mixed Number	A whole number and a fraction.	$2 \frac{3}{5}$
35	Reciprocal	The reciprocal of a number is 1 divided by the number. The reciprocal is shown as $\frac{1}{x}$, or x^{-1} Any non-zero number multiplied by its reciprocal is equal to one.	Reciprocal of 4 is $\frac{1}{4}$ since $4 \times \frac{1}{4}=1$ Reciprocal of $\frac{3}{5}$ is $\frac{5}{3}$ since $\frac{3}{5} \times \frac{5}{3}=1$
36	Equivalent Fractions	Fractions which have the same value. The numerator and the denominator can be multiplied or divided by the same number.	$\frac{2}{3}=\frac{10}{15}$
37	Simplify/cancel a fraction	Reduce a fraction to an equivalent fraction with the lowest possible numbers in both numerator and denominator. The numerator and the denominator are divided by the same number.	$\div 4$ $\frac{8}{20}=\frac{2}{5}$ $\div 4$

Fraction - Key Skills			Examples
38	Shade/recognise a fraction	3 3 red parts 5 parts altogether	
39	Use diagrams to show equivalent fractions		
40	Convert a mixed number to an improper fraction	Change the whole number into a fraction (same denominator) and add on the the fraction part.	$2 \frac{3}{4}=\frac{4}{4}+\frac{4}{4}+\frac{3}{4}=\frac{11}{4}$
41	Convert an improper fraction to a mixed number	Write the improper fraction as an addition of whole numbers and the remaining fractional part.	$\frac{11}{3}=\frac{3}{3}+\frac{3}{3}+\frac{3}{3}+\frac{2}{3}=3 \frac{2}{3}$
42	Find a fraction of an amount	Find the unit fraction first by sharing the amount into the number of equal parts (the denominator). Then multiply by the number of parts you want (the numerator).	Find $\frac{2}{5}$ of $£ 60$ $\begin{aligned} & \frac{1}{5}=60 \div 5=12 \\ & \frac{2}{5}=12 \times 2=24 \end{aligned}$
43	Add/subtract fractions	Make the denominators the same (find the LCM). Use equivalent fractions to change each fraction to the common denominator. Add/subtract the numerators only. NEVER add/subtract denominators.	$\frac{1}{2}+\frac{2}{5}$ Common denominator is 10 $\frac{5}{10}+\frac{4}{10}=\frac{9}{10}$
44	Multiply fractions	Multiply the numerators. Multiply the denominators.	$\frac{1}{2} \times \frac{2}{5}=\frac{2}{10}$
45	Divide fractions	Keep the first fraction the same and multiply by the reciprocal of the second fraction (the dividend).	$\begin{aligned} & \frac{1}{2} \div \frac{2}{5} \\ = & \frac{1}{2} \times \frac{5}{2} \\ = & \frac{5}{4} \end{aligned}$
Decimals \& Rounding - Key Vocabulary			Examples
46	Significant figures	The total number of digits in a number, not counting zeros at the beginning or the end of a number.	345000 has 3 significant figures 0.3047 has 4 significant figures
47	Estimate	Find a rough or approximate answer by calculating with numbers rounded to one significant figure.	$2.3 \times 18.4 \approx 2 \times 20=40$
48	Upper Bound	The highest value that would be rounded down to a number.	A number, n, is rounded to 5.3 to 1 decimal place.
49	Lower bound	The lowest value that would be rounded up to a number.	Upper Bound $=5.35$ Lower Bound $=5.25$
50	Error interval	The range of values (between the upper and lower bounds) in which the precise value could be.	Error interval is: $5.25 \leq n<5.35$
51	Truncate	A method of approximating a decimal number by dropping all decimal places past a certain point without rounding.	3.14159265 can be truncated to 3.1415

68	Inequality symbols	$>$ Greater than \geq Greater than or equal to $<$ Less than \leq less than or equal to	
Algebraic Operations - Key Vocabulary \& Skills			Examples
69	Substitution	Replace letters in an expression with known values.	When $x=2$, the value of $3 x+2=3(2)+2=6+2=8$
70	Collecting like terms	Combining the like terms in an expression.	$4 x+3 y-2 x$ is simplified to $2 x+$ $3 y$
71	Expand	The removal of brackets from an expression by using multiplication.	$4(2 a-3)=8 a-12$
72	Factorise	To take out a common factor from every term in an expression, rewriting the expression using brackets. Factorising is the reverse of expanding brackets.	$6 x^{2}+9 x=3 x(2 x+3)$
73	Solve	Solving an equation is to find the numerical value of a variable.	$\begin{aligned} 2 x+3 & =9 \\ 2 x & =6(-3 \text { both sides }) \end{aligned}$
74	Rearrange	Equations and formulae can be rearranged to isolate a variable on one side of the equals sign.	$x=3(\div 2$ both sides)
Linear Graphs - Key Vocabulary			Examples
75	Origin	The coordinate $(0,0)$, where the x-axis and y-axis intersect.	
76	Axis (plural: Axes)	x-axis is horizontal $(y=0)$ y-axis is vertical $(x=0)$	
77	Coordinates	Written in pairs and inside a bracket. The first term is the x-coordinate (movement across). The second term is the y-coordinate (movement up or down)	$(4,7)$ indicates 4 right, 7 up from the origin. A: $(4,7)$ B: $(-6,-3)$
78	Coordinate plane (grid)	Divided into 4 quarters by the x-axis (horizontal) and the y-axis (vertical). Quadrant 1: x and y are positive Quadrant 2: x negative and y positive Quadrant 3: x and y are negative Quadrant 4: x positive and y negative	
79	Function	The relationship between a set of inputs and a set of outputs. $\mathrm{f}(x)$ read as " f of x ".	If the input is -3 and the output is 9 , we would write $f(-3)=9$
80	Parallel	Always equidistant. Parallel lines have the same gradient. They never meet however far they are extended.	
81	Perpendicular	At right angles to another line.	

