Y11 Maths Knowledge Organiser - Half Term 3

Statistics - Key vocabulary			Examples
1	Qualitative data	Non-numerical data (also known as categorical data)	Hair colour, type of pet
2	Quantitative data	Numerical data - data which is counted or measured	Age, length, frequency
3	Primary data	Data which you collect yourself	Survey, questionnaire, data collection sheet
4	Secondary data	Data which someone else has collected	Database, newspaper, internet
5	Discrete data	Quantitative data that can be counted. It has a finite number of possible values	Shoe size, number of people
6	Continuous data	Quantitative data which can be measured. It has an infinite number of possible values within a selected range	Length, weight, time
7	Bivariate data	Data which contains 2 variables	Often represented by a scatter graph
8	Population	The whole group from which data may be collected	Population of interest
9	Census	Data collected from the whole population	19+19+¢
10	Sample	Data collected from a subset (section) of the whole population.	
11	Bias	When a sample or probability is not fair every member does not have an equal chance of being selected	
12	Random sample	Each member of the population has an equal chance of being selected.	Number each person. Use a random number generator to select the sample.
13	Strata	The name given to groups that a population has been divided into.	Year groups in a school, gender, age
14	Stratified Sample	The population is divided into different groups (strata) and each group is sampled in proportion.	The population contains twice as many males as females, so the sample must be in the same proportion
15	Hypothesis	An idea or theory, which can be tested.	'Large dogs are better at catching tennis balls than small dogs'. We can test this hypothesis by having hundreds of different sized dogs try to catch tennis balls.
Averages - Key concept/skill			Examples
16	Average	The central or typical value in a data set \rightarrow mode, median or mean.	Annual Average Temperature in Israel
17	Mode	The most common/frequent value from a set of data.	Mode of $3,3,6, \underline{\mathbf{7}}, \underline{\mathbf{7}}, \underline{\mathbf{7}}, 8,9,10=7$
18	Median	The middle value when the data is in order.	Median of 9, 5, 15, 6, 8 $\rightarrow 5,6, \underline{8}, 9,15=8$
19	Mean	Add up all the numbers and divide the total by how many numbers there are.	Mean of 7, 8, 9: $\frac{7+8+9}{3}=\frac{24}{3}=8$
20	Range	A measure of the spread of the data, $=$ largest value - smallest value .	Range of 14, 16, 16, 17, 19 = 19-14 = 5

Representing Data			Examples
31	Bar chart / graph	A way of displaying data, using horizontal or vertical bars which are the same width and have gaps between them.	
32	Dual / comparable bar chart	A type of graph which has at least two bars in each category to show a comparison.	
33	Composite bar chart	A type of graph with more than one set of information shown on the same bar.	
34	Line graph	Uses lines to join points on a graph to represent a data set.	
35	Stem \& leaf diagram	A diagram where numbers are split and displayed partly in the stem and partly in the leaf.	
36	Back-to-back stem \& leaf diagram	A form of stem and leaf diagrams sharing the same stem used to compare the distribution of two data sets.	Girls Boys 5 14 $7,5,5,5,4$ 15 $3,8,9$ $8,4,2,1,0$ 16 $2,5,7,7,7,8,8,9$ $9,8,7,6,6,4,2,1,1,0,0$ 17 $0,2,3,6,6,7,7$ 18 $0,1,4,5$
37	Pie Chart	Method of displaying proportional information by dividing a circle up into different-sized sectors.	
38	Pictogram	A pictorial way of presenting data, in which a symbol is used to show a specific quantity of items.	Black Red Green Others
39	Time-series graph	Data that is collected over a period of time. When plotted in a graph the time is represented on the horizontal x-axis.	

47	Cumulative frequency graph	Cumulative frequency is plotted against the upper class boundary for each group. Join the points with a smooth curve	
48	Median and quartiles from a cumulative frequency graph	Use the total frequency to work out which values (cumulative frequencies) will represent the median, upper quartile and lower quartile. Read these values from the graph	
49	Box plot / Box \& whisker diagram	The minimum, lower quartile, median, upper quartile and maximum are shown on a box plot. A box plot can be drawn independently or from a cumulative frequency diagram.	Students sit a maths test. The highest score is 19, the lowest score is 8 , the median is 14 , the lower quartile is 10 and the upper quartile is 17 . Draw a box plot to represent this information.
50	Inter-quartile range (IQR)	Inter-quartile range $=$ Upper Quartile - Lower Quartile $I Q R=U Q-L Q$	
51	Comparing Box Plots	Write two sentences. 1. Compare the averages using the medians for two sets of data. 2. Compare the spread of the data using the range or IQR for two sets of data. The smaller the range/IQR, the more consistent the data. You must compare box plots in the context of the problem.	'On average, students in class A were more successful on the test than class B because their median score was higher.' 'Students in class B were more consistent than class A in their test scores as their IQR was smaller.'
	ter Graphs		Examples
52	Scatter graph Line of best fit	A diagram whose purpose is to establish the relationship between two variables. A straight line drawn through a scatter graph to show a correlation.	$\begin{aligned} & x x_{x}^{x} x x_{x}^{x} \\ & x \times x \\ & x x_{x}^{x} \end{aligned}$

54	Correlation	The relationship between two variables shown on a scatter graph.	
55	Positive correlation	An upward trend in the line of best fit. As one variable increases, the other also increases	
56	Negative correlation	A downward trend in the line of best fit. As one variable increases, the other decreases	0 Strong Positive Correlation Positive Correlation
57	No correlation	No linear relationship between the two variables shown on a scatter graph.	
58	Strong correlation	A close relationship between the two variables shown on a scatter graph.	
59	Weak correlation	A general relationship between two variables shown on a scatter graph.	
60	Outlier	A value that lies outside most of the other values in a set of data.	
Probability - Key Concepts \& Skills			Examples
61	Probability	The chance that an event will happen.	impossible unlikely even chance likely certain
62	Probability scale	Is expressed as a fraction or decimal between 0 (impossible) and 1 (certain). (Can also be a percentage).	
63	Total Probability	Probabilities always add up to 1.	$\begin{aligned} & P(\text { head })=0.5 \text { and } P(\text { tail })=0.5 \\ & \therefore P(\text { head }+ \text { tail })=1 \end{aligned}$
64	Theoretical Probability	$\frac{\text { Number of successful Outcomes }}{\text { Total Number of Possible Outcomes }}$	Probability of rolling a 4 on a fair 6 -sided die $=\frac{1}{6}$.
65	Relative frequency	$\frac{\text { Number of Successful Trials }}{\text { Total Number of Trials }}$	A coin is flipped 50 times and lands on tails 29 times. The relative frequency of getting tails $=\frac{29}{50}$.
66	Exhaustive	Events are exhaustive if they include all possible outcomes	When rolling a six-sided die, the outcomes 1, 2, 3, 4,5 and 6 are exhaustive, because they cover all the possible outcomes.
67	Mutually exclusive	Events that cannot happen at the same time, i.e. $\mathrm{P}(\mathrm{A}$ and B$)=0$	Turning left and right; Heads and Tails on a coin
68	Independent events	The outcome of one event does not affect the outcome of another	Replacing a counter in a bag after picking it.
69	Dependent events	The outcome of one event affects the outcome of another	Not replacing a counter in a bag after picking it, without replacement.
70	AND rule	2 events BOTH happen. Multiply the probabilities.	$\mathrm{P}(\mathrm{A}$ and B$)=\mathrm{P}(\mathrm{A}) \times \mathrm{P}(\mathrm{B})$
71	OR rule	Either one event OR another happens. Add the probabilities.	$\mathrm{P}(\mathrm{A}$ or B$)=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})$
72	Probability of event not happening	P(event') = 1 - Probability of event happening	$P\left(A^{\prime}\right)=P(1-A)$

73	Frequency Tree diagram	Used to represent the possible outcomes and frequencies of 2 or more events	
74	Probability tree diagram	A diagram to show all the possible outcomes of 2 or more events. It is used to calculate the associated probabilities.	
75	Conditional probability	The probability of an event A happening, given that event B has already happened.	
76	Sample space	Shows all of the possible outcomes for one or more events	+ 1 2 3 4 5 6 1 2 3 4 5 6 7 2 3 4 5 6 7 8 3 4 5 6 7 8 9 4 5 6 7 8 9 10 5 6 7 8 9 10 11 6 7 8 9 10 11 12
77 78	Venn Diagram ε	Diagram used to represent the relationship between 2 or 3 sets of data (overlapping circles inside a rectangle). The universal set - all the data	
79	A U B	Union of A and B (all the data contained in set A or B or both).	
80	$A \cap B$	Intersection of A and B (only the data that overlaps set A and B).	
81	A^{\prime}	Data which is not in set A	A = people with blue eyes $A^{\prime}=$ peoplewho do not have blue eyes

