Year 11 Maths Knowledge Organiser - Half Term 2

	Shape Formulae		Examples
1	Perimeter	The total distance around the outside of a shape. Units include: $\mathrm{mm}, \mathrm{cm}, m$ etc.	
2	Area	The amount of space inside a shape. Units include: $\mathrm{mm}^{2}, \mathrm{~cm}^{2}, \mathrm{~m}^{2}$	
3	Area of a rectangle	Length x Perpendicular height	Area $=9 \times 4=36 \mathrm{~cm}^{2}$
4	Area of a parallelogram	Base x Perpendicular Height	
5	Area of a triangle	½ Base x Perpendicular Height	
6	Area of a trapezium	$1 / 2(a+b) \times$ perpendicular height Where a and b are the parallel sides.	
7	Area of a circle	πr^{2}	Find the area of a circle with radius 5 cm Area $=\pi \times 5^{2}=25 \pi \mathrm{~cm}^{2}$
8	Circumference of a circle	πd or $2 \pi r$	Find the circumference of a circle with radius 5 cm (diameter $=10 \mathrm{~cm}$) Circumference $=\pi \times 10($ or $2 \times \pi \times 5)=10 \pi \mathrm{~cm}$
9	Area of a sector	$\frac{\theta}{360} \times \pi r^{2}$	$\text { Area }=\frac{115}{360} \times \pi \times 4^{2}=16.1 \mathrm{~cm}^{2}$
10	Arc length of a sector	$\frac{\theta}{360} \times 2 \pi r$	$\text { Arc Length }=\frac{115}{360} \times \pi \times 8=8.03 \mathrm{~cm}$

11	Volume	Volume is a measure of the amount of space inside a solid shape. Units: $\mathrm{mm}^{3}, \mathrm{~cm}^{3}, \mathrm{~m}^{3}$ etc.	
12	Volume of a cuboid	Length x Width x Height	
13	Volume of a prism	Area of cross-section x length	
14	Volume of a cylinder	$\pi r^{2} \times$ length/height	
15	Volume of a pyramid	$1 / 3$ area of base x height	
16	Surface area of 3D shape	Total area of all faces	
17	* Volume of a cone	$1 / 3 \pi r^{2} \mathrm{~h}$	
18	*Curved surface area of a cone	$\pi r l$ (l is the slant height)	The slant height of the cone above is 5.4 cm Curved Surface Area $=\pi \times 2 \times 5.4=10.8 \pi$
19	*Volume of a sphere	$\frac{4}{3} \pi r^{3}$	Find the volume of a sphere with diameter 10 cm . (radius $=5 \mathrm{~cm}$) $V=\frac{4}{3} \pi(5)^{3}=\frac{500 \pi}{3} \mathrm{~cm}^{3}$
20	*Surface area of a sphere	$4 \pi r^{2}$	Find the surface area of a sphere with diameter 10 cm (radius $=5 \mathrm{~cm}$) $S A=4 \times \pi \times 5^{2}=100 \pi \mathrm{~cm}^{2}$
21	Volume of a frustum	A frustum is a solid (usually a cone or pyramid) with the top removed. Find the volume of the whole (large) shape, then take away the volume of the small cone/pyramid removed at the top.	

38	Perpendicular	Lines which cross at 90°	
Pythagoras \& Trigonometry			Examples
39	Right-angled triangle	A triangle that contains a right-angle (90 degrees)	
40	Hypotenuse	The longest side - opposite the right-angle	
41	Pythagoras' Theorem	For any right angled triangle: $a^{2}+b^{2}=c^{2}$	Used to find missing lengths. a and b are the shorter sides, c is the hypotenuse (longest side) e.g. To find the hypotenuse $\begin{aligned} & x^{2}=4^{2}+7^{2} \\ & X^{2}=16+49 \\ & X^{2}=65 \\ & x=V 65=8.06 \mathrm{~cm} \end{aligned}$
			e.g. To find a short side $\begin{aligned} & 17^{2}=x^{2}+5^{2} \\ & 289=x^{2}+25 \\ & 289-25=x^{2} \\ & x^{2}=264 \\ & x=\text { v } 264=16.25 \mathrm{~cm} \end{aligned}$
42	Trigonometry	The area of maths that studies the relationships between the sides and angles of triangles	
43	Labelling a right angled triangle	$\mathrm{H}=$ hypotenuse $\mathrm{O}=$ Opposite (to the angle involved) A = Adjacent (to the angle involved) θ is the angle involved	
44	Right-angled Trigonometry SOH CAH TOA	SOH $\operatorname{Sin} A=\frac{\text { Opposite }}{\text { Hypotenuse }}$	

60	Rotation	Turning of an object (must have angle, direction and centre of rotation as an instruction). The size does not change, but the shape is turned around a point. Use tracing paper.	Rotate Shape A 90° anti-clockwise about $(0,1)$
61	Centre of rotation	Position around an object is rotated (can be a coordinate).	objact mage
62	Angle of rotation	Angle that an object is rotated around a fixed point.	
63	Rotational symmetry	A shape has rotational symmetry if it can be rotated (or turned) around a point to look exactly the same in a new position.	
64	Order of Rotational Symmetry	States how many occasions a shape appears the same as the object when rotated.	Order of rotational symmetry $=5$ Order of rotational symmetry $=2$
65	Translation	Where an object is moved horizontally and vertically, the object does not change size or orientation.	
66	Column Vector	A way of describing a translation, with x - and y-values.	In a column vector, the top number moves left (-) or right (+) and the bottom number moves up (+) or down (-) $\binom{2}{3}$ means '2 right, 3 up' $\binom{-1}{-5}$ means '1 left, 5 down'
67	Enlargement	Transformation of an object onto its image with a change in size of its dimensions. The shape will get bigger or smaller. Multiply each side by the scale factor.	Scale Factor = 3 means ' 3 times larger = multiply by 3^{\prime} Scale Factor $=1 / 2$ means 'half the size $=$ divide by 2^{\prime}
68	Scale Factor	Ratio showing the difference in size of corresponding lengths on object and its image.	
69	Centre of enlargement	Point at which enlargement occurs, which connects the object to its image. Finding the Centre of Enlargement Draw straight lines through corresponding corners of the two shapes. The centre of enlargement is the point where all the lines cross over. Be careful with negative enlargements as the corresponding corners will be the other way around.	

70	Negative Scale Factor Enlargements	Negative enlargements will look like they have been rotated.		Enlarge ABC by scale factor -2, centre (1,1) $S F=-2$ will be rotated, and also twice as big
71	Invariance	A point, line or shape is invariant if it does not change/move when a transformation is performed. An invariant point 'does not vary'.		If shape P is reflected in the y-axis, then exactly one vertex is invariant.
72	Describing Transformations	If you are asked to describe a 'transformation', you need to say the name of the type of transformation as well as the other details.		Give the following information when describing each transformation: Look at the number of marks in the question for a hint of how many pieces of information are needed. - Translation, Vector - Rotation, Direction, Angle, Centre - Reflection, Equation of mirror line - Enlargement, Scale factor, Centre of enlargement
Similar \& Congruent Shapes			Examples	
73	Congruent Shapes	Shapes that are identical - same shape and same size.		es can be rotated or reflected but still be ruent.
74	Congruent triangles	Triangles are congruent when one of the 4 conditions of congruence is true		
75	SSS	Condition 1: Two triangles are congruent if all 3 sides are equal		
76	SAS	Condition 2: Two triangles are congruent if two sides and the included angle are equal		

77	AAS	Condition 3: Two triangles are congruent if two angles and the corresponding side are equal	
78	RHS	Condition 4: Two triangles are congruent if right angle, hypotenuse and one other side are equal	
79	Proof	A series of logical statements that show that something is true. Each statement must be supported by a mathematical reason or fact.	
80	Similar Shapes	Shapes are similar if they are the same shape but different sizes. Angles are equal Sides are in proportion (ratios of corresponding sides are equal) One shape is an enlargement of the other	
81	Scale Factor	The ratio of corresponding sides of two similar shapes. To find a scale factor, divide a length on one shape by the corresponding length on a similar shape.	Scale Factor $=15 \div 10=1.5$
82	Linear scale factor (LSF)	the ratio of corresponding sides of two similar shapes. If k is the scale factor lengths are multiplied or divided by k	Linear Scale Factor $=15 \div 10=1.5$

