Year 11 Maths Knowledge Organiser – Half Term 2

	Shape Formulae		Examples	
1	Perimeter	The total distance around	8 cm	
		the outside of a shape.	5 cm	
			5 cm	
		Units include:	Perimeter = 8 + 5 + 8 + 5 = 26cm	
		<i>mm, cm, m</i> etc.		
2	Area	The amount of space		
		inside a shape.		
		TT 1, 1 1 1		
		Units include:		
3	Area of a	mm^2 , cm^2 , m^2 Length x Perpendicular	9 cm	
5	rectangle	height		
	rectangle	height	4 cm	
			Area = 9 x 4 = 36cm ²	
4	Area of a	Base x Perpendicular Height		
	parallelogram		4cm 3cm	
5	Area of a	½ Base x Perpendicular	$Area = 7 \times 3 = 21 \text{cm}^2$	
5	triangle	Height	9 4 5	
	thungie	neight		
			Area = $\frac{12}{12}$ Area = $\frac{1}{2}$ (12 x 4) = 24cm ²	
6	Area of a	½ (a + b) x perpendicular	6 cm	
	trapezium	height		
	-	_	$4rea = \frac{16 \text{ cm}}{16 \text{ cm}} + 376 \text{ and } 16 \text{ cm}^2$	
		Where a and b are the		
		parallel sides.		
7	Area of a	πr^2	Find the area of a circle with radius 5cm	
	circle		Area = $\pi \times 5^2 = 25\pi \ cm^2$	
8	Circumference	πd or 2πr	Find the circumference of a circle with radius 5cm	
0	of a circle	<i>nu 01 2n1</i>	(diameter = 10cm)	
			Circumference = $\pi \times 10$ (or $2 \times \pi \times 5$) = 10π cm	
9	Area of a		Area = $\frac{115}{360} \times \pi \times 4^2 = 16.1 \text{cm}^2$	
	sector		360	
		θ $\pi \pi^2$	\frown	
		$\frac{ heta}{360}$ x πr^2	0 4cm B	
			P115	
			115	
10	Arc length of		Arc Length = $\frac{115}{360} \times \pi \times 8 = 8.03$ cm	
1	a sector			
		0		
		$\frac{\theta}{360} \times 2\pi r$	O 4cm B	
			Piis	
1				

11	Volume	Volume is a measure of the amount of space inside a solid shape. Units: mm^3 , cm^3 , m^3 etc.	
12	Volume of a cuboid	Length x Width x Height	3 cm $3 cm$ $5 cm$ $5 cm$ $4 cm$ $5 cm$
13	Volume of a prism	Area of cross-section x length	Area of Cross Section
14	Volume of a cylinder	πr^2 x length/height	$5cm \qquad \qquad$
15	Volume of a pyramid	⅓ area of base x height	Volume = $\frac{1}{3} \times 6 \times 6 \times 7 = 84$ cm ³
16	Surface area of 3D shape	Total area of all faces	3
17	* Volume of a cone	⅓πr ² h	$V = \frac{1}{3}\pi(4)(5)$ $= 20.9cm^{3}$
18	*Curved surface area of a cone	$\pi r l$ (l is the slant height)	The slant height of the cone above is 5.4cm Curved Surface Area = $\pi \times 2 \times 5.4 = 10.8\pi$
19	*Volume of a sphere	$\frac{4}{3} \pi r^3$	Find the volume of a sphere with diameter 10cm. (radius = 5cm) $V = \frac{4}{3}\pi(5)^3 = \frac{500\pi}{3}cm^3$
20	*Surface area of a sphere	4πr ²	Find the surface area of a sphere with diameter 10cm (radius = 5cm) $SA = 4 \times \pi \times 5^2 = 100\pi \ cm^2$
21	Volume of a frustum	A frustum is a solid (usually a cone or pyramid) with the top removed . Find the volume of the whole (large) shape, then take away the volume of the small cone/pyramid removed at the top.	$V = \frac{1}{3}\pi(10)^{2}(24) - \frac{1}{3}\pi(5)^{2}(12) = 700\pi \text{cm}^{3}$

Ang	le Facts		Examples
22	Acute angle	less than 90°	
23	Right angle	exactly 90°	
24	Obtuse angle	greater than 90° but less than 180°	
25	Reflex angle	greater than 180° but less than 360°	Acute Right Obtuse Reflex
26	Angles in a triangle	Angles in a triangle sum to 180°	$a + b + c = 180^{\circ}$
27	Angles on a straight line	Angles on a straight line sum to 180°	$\frac{x - y}{x + y = 180^{\circ}}$
28	Angles in a quadrilateral	Angles in a quadrilateral sum to 360°	$ \begin{array}{c} $
29	Angles at a point	Angles about a point sum to 360°	$\begin{array}{c} d \\ a \\ c \\ b \\ a+b+c+d = 360^{\circ} \end{array}$
30	Vertically opposite angles	Vertically opposite angles are equal	b a b
31	Alternate angles	(Z angles) Alternate angles in parallel lines are equal	
32	Corresponding angles	(F angles) Corresponding angles in parallel lines are equal	
33	Co-interior angles	Co-interior angles sum to 180°	x + y = 180°
34	Sum of Interior Angles in a polygon	$(n-2) \times 180$ where n is the number of sides.	Sum of Interior Angles in a Decagon = $(10 - 2) \times 180 = 1440^{\circ}$
35	Exterior angles of a polygon	The sum of exterior angles of any polygon is 360°	Size of Exterior Angle in a Regular Octagon = $\frac{360}{8} = 45^{\circ}$
36	Interior + exterior angle of a polygon	In any polygon, interior + exterior angle = 180°	Exterior angle
37	Parallel	Lines which are always the same distance apart – if extended they would never meet	

38	Perpendicular	Lines which cross at 90°	
			×
Pvt	hagoras & Trigonometr	v	Examples
39	Right-angled triangle	A triangle that contains a right-angle (90 degrees)	Right Angled
40	Hypotenuse	The longest side - opposite the right-angle	b Hypotenuse
41	Pythagoras' Theorem	For any right angled triangle: $b = \begin{bmatrix} c \\ a \end{bmatrix}$ $a^{2} + b^{2} = c^{2}$	Used to find missing lengths. a and b are the shorter sides, c is the hypotenuse (longest side) e.g. To find the hypotenuse $4_{cm} \qquad X^2 = 4^2 + 7^2$ $X^2 = 4^2 + 7^2$ $X^2 = 16 + 49$ $X^2 = 65$ $X = \sqrt{65} = 8.06 \text{ cm}$ e.g. To find a short side $5_{cm} \qquad 17^2 = x^2 + 5^2$ $289 = x^2 + 25$ $289 - 25 = x^2$ $x^2 = 264$ $x = \sqrt{264} = 16.25 \text{ cm}$
42	Trigonometry	The area of maths that studies the relationships between the sides and angles of triangles	
43	Labelling a right angled triangle	H = hypotenuse O = Opposite (to the angle involved) A = Adjacent (to the angle involved) θ is the angle involved	
44	Right-angled Trigonometry SOH CAH TOA	SOH Sin A = $\frac{\text{Opposite}}{\text{Hypotenuse}}$	O S H

		САН	
			A
		$Cos A = \frac{Adjacent}{Hypotenuse}$	СН
		ТОА	0
		$Tan A = \frac{Opposite}{Adjacent}$	TA
Met	tric Unit Conversions		
45	1 Kilometre	= 1000 metres	
46	1 metre	= 100cm	
40		= 1000mm	
47	1 centimetre	= 10mm	
48	1 tonne	= 1000kg	
49	1 Kilogram	= 1000g	
50	1 millilitre	= 1cm ³	
	1 litre	= 1000ml	
51		= 1000cm ³	
		= 100cl	
52	1cm²	= 10mm X 10mm = 100mm ²	1 cm 10 mm
	1m²	= 100cm X 100cm = 10 000cm ²	
53			• 1 cm • 10 mm •
			Area = $1 \text{ cm} \times 1 \text{ cm}$ Area = $10 \text{ mm} \times 10 \text{ mm}$ = 1 cm^2 = 100 mm^2
	1cm ³	= 10mm X 10mm X 10mm = 1 000mm ³	
54	10111		1 cm 10 mm
74			1 cm 10mm 10mm
	1m ³	= 100cm X100cm X 100cm =1 000 000cm ³	Volume = 1 cm × 1 cm Volume = 10 mm × 10 mm × 10 mm = 1 cm ³ = 1000 mm ³
55	1		
Tra	nsformations – Key (Examples
56	Transformation	Shape changing in size or position by	
		reflection, translation, rotation,	
		anlarganaant	
		enlargement.	
57	Image	New shape after a transformation.	Object Image
57 58	Image Reflection	-	
		New shape after a transformation.	Reflect shape C in the line $y = x$
		New shape after a transformation. When an object is repeated in reverse	
		New shape after a transformation. When an object is repeated in reverse through a line of symmetry (mirror line).	
		New shape after a transformation. When an object is repeated in reverse through a line of symmetry (mirror line). The size does not change, but the shape is	
		New shape after a transformation. When an object is repeated in reverse through a line of symmetry (mirror line). The size does not change, but the shape is ' flipped' like in a mirror .	
-		New shape after a transformation. When an object is repeated in reverse through a line of symmetry (mirror line). The size does not change, but the shape is 'flipped' like in a mirror . Line $x = #$ is a vertical line .	Reflect shape C in the line $y = x$
-		New shape after a transformation. When an object is repeated in reverse through a line of symmetry (mirror line). The size does not change, but the shape is 'flipped' like in a mirror . Line $x = #$ is a vertical line . Line $y = #$ is a horizontal line .	Reflect shape C in the line $y = x$
-		New shape after a transformation. When an object is repeated in reverse through a line of symmetry (mirror line). The size does not change, but the shape is 'flipped' like in a mirror . Line $x = #$ is a vertical line . Line $y = #$ is a horizontal line .	Reflect shape C in the line $y = x$
58	Reflection	New shape after a transformation. When an object is repeated in reverse through a line of symmetry (mirror line). The size does not change, but the shape is 'flipped' like in a mirror. Line $x = \#$ is a vertical line. Line $y = \#$ is a horizontal line. Line $y = x$ is a diagonal line.	Reflect shape C in the line $y = x$
-	Reflection Line of	New shape after a transformation. When an object is repeated in reverse through a line of symmetry (mirror line). The size does not change, but the shape is 'flipped' like in a mirror . Line $x = \#$ is a vertical line . Line $y = \#$ is a horizontal line . Line $y = x$ is a diagonal line . Line which is mid-way between all points on	Reflect shape C in the line $y = x$
58	Reflection	New shape after a transformation. When an object is repeated in reverse through a line of symmetry (mirror line). The size does not change, but the shape is 'flipped' like in a mirror. Line $x = \#$ is a vertical line. Line $y = \#$ is a horizontal line. Line $y = x$ is a diagonal line. Line which is mid-way between all points on an object and corresponding ones on its	Reflect shape C in the line $y = x$
58	Reflection Line of	New shape after a transformation. When an object is repeated in reverse through a line of symmetry (mirror line). The size does not change, but the shape is 'flipped' like in a mirror . Line $x = \#$ is a vertical line . Line $y = \#$ is a horizontal line . Line $y = x$ is a diagonal line . Line which is mid-way between all points on	Reflect shape C in the line $y = x$
58	Reflection Line of	New shape after a transformation. When an object is repeated in reverse through a line of symmetry (mirror line). The size does not change, but the shape is 'flipped' like in a mirror. Line $x = \#$ is a vertical line. Line $y = \#$ is a horizontal line. Line $y = x$ is a diagonal line. Line which is mid-way between all points on an object and corresponding ones on its	Reflect shape C in the line $y = x$
58	Reflection Line of	New shape after a transformation. When an object is repeated in reverse through a line of symmetry (mirror line). The size does not change, but the shape is 'flipped' like in a mirror. Line $x = \#$ is a vertical line. Line $y = \#$ is a horizontal line. Line $y = x$ is a diagonal line. Line which is mid-way between all points on an object and corresponding ones on its	Reflect shape C in the line $y = x$
58	Reflection Line of	New shape after a transformation. When an object is repeated in reverse through a line of symmetry (mirror line). The size does not change, but the shape is 'flipped' like in a mirror. Line $x = \#$ is a vertical line. Line $y = \#$ is a horizontal line. Line $y = x$ is a diagonal line. Line which is mid-way between all points on an object and corresponding ones on its	Reflect shape C in the line $y = x$
58	Reflection Line of	New shape after a transformation. When an object is repeated in reverse through a line of symmetry (mirror line). The size does not change, but the shape is 'flipped' like in a mirror. Line $x = \#$ is a vertical line. Line $y = \#$ is a horizontal line. Line $y = x$ is a diagonal line. Line which is mid-way between all points on an object and corresponding ones on its	Reflect shape C in the line $y = x$

60	Rotation	Turning of an object (must have angle, direction and centre of rotation as an instruction).	Rotate Shape A 90° anti-clockwise about (0,1)
		The size does not change, but the shape is turned around a point .	X. V.
		Use tracing paper.	
61	Centre of rotation	Position around an object is rotated (can be a coordinate).	Object
62	Angle of rotation	Angle that an object is rotated around a fixed point.	
63	Rotational symmetry	A shape has rotational symmetry if it can be rotated (or turned) around a point to look exactly the same in a new position.	
64	Order of Rotational Symmetry	States how many occasions a shape appears the same as the object when rotated.	Order of rotational symmetry = 5 symmetry = 2
65	Translation	Where an object is moved horizontally and vertically, the object does not change size or orientation .	Q 3 3 4 7 4 7 4 7 4 7 7 4 7 7 7 7 7 7 7 7
66	Column Vector	A way of describing a translation, with x- and y- values.	In a column vector, the top number moves left (-) or right (+) and the bottom number moves up (+) or down (-) $\binom{2}{3}$ means '2 right, 3 up' $\binom{-1}{5}$ means '1 left, 5 down'
67	Enlargement	Transformation of an object onto its image with a change in size of its dimensions. The shape will get bigger or smaller . Multiply each side by the scale factor .	Scale Factor = ½ means '3 times larger = multiply by 3' Scale Factor = ½ means 'half the size = divide by 2'
68	Scale Factor	Ratio showing the difference in size of corresponding lengths on object and its image.	
69	Centre of enlargement	 Point at which enlargement occurs, which connects the object to its image. Finding the Centre of Enlargement Draw straight lines through corresponding corners of the two shapes. The centre of enlargement is the point where all the lines cross over. Be careful with negative enlargements as the corresponding corners will be the other way around. 	A to B is an enlargement SF 2 about the point (2.1)

70	Negative Scale Factor Enlargements	Negative enlargements will look like they have been rotated.		Enlarge ABC by scale factor -2, centre (1,1) SF = -2 will be rotated, and also twice as big
71	Invariance	A point, line or shape is invariant if it does change/move when a transformation is performed. An invariant point 'does not vary'.		If shape P is reflected in the $y - axis$, then exactly one vertex is invariant.
72	Describing Transformations	If you are asked to describe a 'transformation', you need to say the nam the type of transformation as well as the other details.	e of	Give the following information when describing each transformation: Look at the number of marks in the question for a hint of how many pieces of information are needed. - Translation, Vector - Rotation, Direction, Angle, Centre - Reflection, Equation of mirror line - Enlargement, Scale factor, Centre of enlargement
Simi	lar & Congruent Shar	Des	Exam	ples
73	Congruent Shapes	Shapes that are identical - same shape and same size .	Shape	es can be rotated or reflected but still be
74	Congruent triangles	Triangles are congruent when one of the 4 conditions of congruence is true		
75	SSS	Condition 1: Two triangles are congruent if all 3 sides are equal	_	
76	SAS	Condition 2: Two triangles are congruent if two sides and the included angle are equal	\square	

77	AAS	Condition 3: Two triangles are congruent if two angles and the corresponding side are equal	
78	RHS	Condition 4: Two triangles are congruent if right angle, hypotenuse and one other side are equal	
79	Proof	A series of logical statements that show that something is true. Each statement must be supported by a mathematical reason or fact.	
80	Similar Shapes	Shapes are similar if they are the same shape but different sizes. Angles are equal Sides are in proportion (ratios of corresponding sides are equal) One shape is an enlargement of the other	
81	Scale Factor	The ratio of corresponding sides of two similar shapes. To find a scale factor, divide a length on one shape by the corresponding length on a similar shape.	$ \begin{array}{c} 24 \\ 10 \\ 10 \\ 15 \\ 5 \\ $
82	Linear scale factor (LSF)	the ratio of corresponding sides of two similar shapes. If k is the scale factor lengths are multiplied or divided by k	$\begin{array}{c c} & 24 \\ 10 & 15 \\ & \\ 10 & \\ 15 & \\ \\ 15 & \\ \\ 10 & \\ \\ 15 & \\ \\ 10 & \\ \\ 10 & \\ \\ 10 & \\ \\ 10 & \\ \\ 10 & \\ \\ 10 & \\ \\ 10 & \\ \\ 10 & \\ \\ 10 & \\ \\ 10 & \\ \\ 10 & \\ \\ \\ 10 & \\ \\ \\ 10 & \\ \\ \\ 10 & \\ \\ \\ 10 & \\ \\ \\ 10 & \\ \\ \\ 10 & \\ \\ \\ 10 & \\ \\ \\ 10 & \\ \\ \\ \\ 10 & \\ \\ \\ \\ \\ 10 & \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $