Algebra - Foundation

Notation
$a b=a \times b$
$a^{2}=a \times a$
$(2 a)^{3}=2 a \times 2 a \times 2 a$
$(a+b)^{2}=(a+b)(a+b)$

Definitions

Expression - no equal signs e.g. $2 x+3,2 y,(3 x-2)^{2}$
Equations - equal signs, can be solved, e.g. $y+4=10$
Identities - identical/equivalent to e.g. $2(y+4) \equiv 2 y+8$
Formulae - equal signs, more than one unknown e.g. $A=1 / 2 b h$

Simplifying expressions by collecting like terms

Always circle the sign IN FRONT of the term to avoid errors.

$$
3 x-7 b-x+9 b \equiv 2 x+2 b
$$

Typical Exam Q: Create an expression for the perimeter of the shape by adding and collecting like terms.
If the perimeter is given as 20 cm , for example, you can create an equation

$$
4+3 a+4+6+2 a=20
$$

$$
5 a+14=20
$$

Simplifying expressions multiplication and division

$\frac{18 b^{6}}{3 a b^{2}}=\frac{6 b^{4}}{a}$

Open circle: $</>$
Closed circle: \leq / \geq

Factorising and expanding

Distance / Time Graphs

Turning point and roots of a quadratic equation

Straight line graphs

$y=m x+c$
$m=$ gradient
$c=y-$ intercept
positive gradient
negative gradient

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{\text { change in } y}{\text { change in } x}
$$

Parallel lines - have equal gradients
Graphs that need to be recognised

$$
y=k x
$$

$\left|\begin{array}{r|r|}\boldsymbol{y}=\frac{\boldsymbol{k}}{\boldsymbol{x}} \\ \text { Inverse } \\ \text { proportion }\end{array}\right|$

Finding the nth term of a linear sequence

$5,7,9,11,13, \ldots$.

1. Find the common difference: 2
2. This is the coefficient of $n: 2 n$
3. Find the difference between the coefficient of n and the first term 5-2=3
4. Add this to the amount of n

$$
2 n+3
$$

Geometry and Measures - Foundation Part 1

Trigonometry
 $$
S \frac{O}{H} C \frac{A}{H} T \frac{O}{A}
$$

Example - finding a side: $\sin 37=\frac{x}{5}$
$x=5 \times \sin 37^{\circ}$

Example - finding a side:
$\tan y=\frac{3.2}{7.1}$
$y=\tan ^{-1}\left(\frac{3.2}{7.1}\right)$.
Exact Trig values

Angle (θ)	$\sin (\theta)$	$\cos (\theta)$	$\tan (\theta)$
0°	0	1	0
30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$
45°	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	1
60°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
90°	1	0	undefined

Types of triangles
Right angled Isosceles Equilateral Scalene

Types of quadrilaterals
Square
Rectangle
Parallelogram
Rhombus
Trapezium
Kite

Angle Facts

Vertically opposite angles are equal: $a=b$ and $m=n$

Angles in a triangle sum to 180°.
Angles on a straight line sum to 180°.
E.G: $b=60^{\circ}$ so $a=50^{\circ}$

Simple vector notation

$\binom{a}{b}$

a : movement along the x -axis (left or right)
b : movement along the y-axis (up or down)
$-a$: movement left

$$
-b: \text { movement down }
$$

Operations with vectors
$\binom{2}{6}+\binom{7}{-3}=\binom{9}{3}$
If $b=\binom{4}{-2}$, then $3 b=\binom{12}{-6}$

Area of key shapes

Triangle: A $=\frac{b \times h}{2} \quad(h=$ perpendicular height $)$

Parallelogram: $\mathrm{A}=b x h \quad(h=$ perpendicular height $)$

Trapezium: A $=\left(\frac{a+b}{2}\right) \times h$ (add together the parallel sides, divide the total by 2 , and then multiply by the perpendicular height between the parallel sides)

Angles in parallel lines

Corresponding angles are equal

Alternate angles are equal

Co-interior angles are equal

Volume \& surface area

Volume $=$ area of cross section x length
Surface area $=$ area of all the faces of a 3D shape

Learn the cylinder

$$
\begin{gathered}
V=\pi r^{2} h \\
S A=2 \pi r^{2}+\pi d l
\end{gathered}
$$

Angles in regular polygons

$n=$ number of sides

Interior angle + exterior angle $=180^{\circ}$

Exterior angle $=\frac{360}{n}$

$$
n=\frac{360}{\text { Exterior angle }}
$$

Transformations - rotation	Transformations - translations and reflections	Transformations - enlargement
 Always use tracing paper. Describe: 1. It's a rotation 2. Size of rotation in degrees 3. Orientations: clockwise or anticlockwise 4. Centre of rotation given as a coordinate (x, y)	 Reflection in the line $x=a$ Translate triangle Reflection $A B C$ to $A^{\prime} B^{\prime} C^{\prime}$ with in the line the vector $\binom{6}{-4}$ $y=a$	 Describe: 1. It's an enlargement 2. The scale factor (if the image is smaller than the object the scale factor is fractional e.g. $1 / 2$) 3. The centre of enlargement given as a coordinate
Congruent	Circles	
3 sides are respectively equal 2 angles and the included side are respectively equal 2 sides and the included angle are respectively equal RHS (Right angle - Hypotenuse - Side) Hypotenuse and one side are respectively equal	Area $=\pi r^{2}$ Sector Area $=\frac{\theta}{360} \pi r^{2}$ Arc length $=\frac{\theta}{360} \pi d$	$a^{2}+b^{2}=c^{2}$ Only applies to right angled triangles. Can be used to find the height of an isosceles triangle Can be used to find the length distance petween two coordinates
Similar shapes Same shape, different sides The ratio of the lengths of corresponding sides are equal Length scale factor $=15 \div 5=3$ $x=3 \mathrm{~cm} \times 3$	3D notation Cube: Faces: 6 Edges: 12 Vertices: 8 Square based pyramid: $F=5, E=8, V=5$	Bearings Measure from the North Measured in a clockwise direction Written using 3 digits Bearing of B from A (start at A) Bearing of A from B (start at B)

Number Ratio and Proportion - Foundation Part 1

Estimate Round each value to one significant figure	Simplifying Ratio Divide both sides by the highest common factor	Percentages
Standard form $a \times 10^{n}, \text { where } 1 \leq a<10$	$3 \leadsto 2: \begin{array}{lll} 6 & 15 \\ 2 & 5 \end{array}$	Finding percentages of an amount $\begin{array}{ll} 1 \% & \div 100 \\ 5 \% & \div 20 \\ 20 \% & \div 5 \end{array}$
Reciprocal Reciprocal of 7 is $\frac{1}{7}$, reciprocal of $\frac{2}{3}$ is $\frac{3}{2}$ etc	Simplifying Ratio 1:n Divide both sides by the highest factor of the left hand side	$\begin{array}{ll} 25 \% & \div 4 \\ 50 \% & \div 2 \end{array}$
Sequences Fibonacci sequence: $1,1,2,3,5,8,13,21$ Geometric Sequence: each term is multiplied but he same constant to get the next number. E.g. $3,12,48,191, \ldots$. (x by 4 each time)	side $\begin{aligned} & 2 \mathrm{~m}: 180 \mathrm{~cm} \\ & 200 \mathrm{~cm}: 180 \mathrm{~cm} \\ & 2: 1.8 \\ & 1: 0.9 \end{aligned}$	Multipliers: To find the multiplier for a percentage, divide by 100 Use multipliers on a calculator paper e.g. 35% of $370=0.35 \times 370$
Squares and Cubes Square numbers: $1,4,9,16,25,36,49,64,81,100$, $121,144,169,196,225$ etc Cube numbers: $1,8,27,64,125,216,343,512$, etc	Fractions Add and Subtract - ensure the fractions have the same denominator before adding numerators $\frac{4}{5}-\frac{1}{3}=\frac{12}{15}-\frac{5}{15}=\frac{7}{15}$ Multiply - multiply numerators and denominators $\frac{4}{5} \times \frac{1}{3}=\frac{4}{15}$ Divide - take reciprocal of the second fraction and then multiply the new numerators and denominators $\frac{4}{5} \div \frac{1}{3}=\frac{4}{5} \times \frac{3}{1}=\frac{12}{5}=2 \frac{2}{5}$	Increasing and decreasing a given amount Calculator: Orginal Amount x mutiplier $=$ new amount Non-calculator: find the increase or decrease and add to the original amount Finding percentage increase or decrease (profit/loss) $\frac{\text { value of increase } / \text { decrease }}{\text { Original }} \times 100$ Writing an amount as a percentage of the original $\frac{\text { Amount }}{\text { Original }} \times 100$ Reverse Percentage - finding the original amount $\text { Orginal Amount }=\frac{\text { New Amount }}{\text { multiplier }}$

Number Ratio and Proportion - Foundation Part 2

Growth \& Decay / Compound interest
 original amount \times multiplier ${ }^{\text {time }}$

Where the multiplier is the percentage, increase or decrease from 100%, converted to a decimal.
e.g.
30% decrease is $70 \%=0.7$
30% increase is $130 \%=1.3$

Compound Units (rearrange as necessary)

$$
\begin{gathered}
\text { Speed }=\frac{\text { Distance }}{\text { Time }} \\
\text { Area }=\frac{\text { Force }}{\text { Pressure }} \\
\text { Density }=\frac{\text { Mass }}{\text { Volume }}
\end{gathered}
$$

Ordering fractions

Calc: use division to write each fraction as a decimal Non-calc: write fractions with common denominators

$$
\text { Index Laws } \quad \begin{aligned}
a^{n} \times a^{m} & =a^{n+m} \\
a^{n} \div a^{m} & =a^{n-m} \\
\left(a^{n}\right)^{m} & =a^{n m} \\
a^{0} & =1 \\
a^{-n} & =\frac{1}{a^{n}} \\
a^{\frac{n}{m}} & =\sqrt[m]{a^{n}}
\end{aligned}
$$

Dividing by decimals:

1. Write the calculation as a fraction
2. Form an equivalent fraction to makes integers (multiply by powers of 10)
3. Use short division (bus stop) to calculate
e.g. $460 \div 0.4=\frac{460}{0.4}=\frac{4600}{4}=1150$

Error Intervals

least possible value $\leq x<$ greatest possible value
e.g. A fence is 30 m long to the nearest 10 m .
$25 \mathrm{~m} \leq l<35 \mathrm{~m}$

Truncation

Truncation is a method of approximating a decimal number by dropping all decimal places past a certain point without rounding.
e.g. Truncate 3.14159265 to 4 decimal places $=3.1415$

Order of operations

Bracket
Indices
Division and Multiplication
Addition and Subtraction

Prime Factorisation

Conversions

10 millimetres $=1$ centimetre 15 minutes $=0.25$
hours
100 centimetres $=1$ metre $\quad 30$ minutes $=0.5$
hours
1000 metres = 1 kilometre
45 minutes $=0.75$
hours
$1000 \mathrm{~cm}^{3}=1$ litre $\quad 1000 \mathrm{~g}=1$ kilogram
$1000 \mathrm{ml}=1$ litre $\quad 1000 \mathrm{~kg}=1$ tonne

Negative numbers

Adding and subtracting: (vertical number lines help)
$-3-5=-8$
$-3+5=2$
$3--5=-3+5=2$
$-3-+5=-3-5=-8$
$-3+-5=-3-5=-8$

Multiplying and dividing:

Different signs - answer will be negative
$+x-=-, \quad-x+=-$
Same signs - answer will be positive

- x - = +

Rounding to significant figures

Start from the first non-zero number and round as normal, but ensure the place value is correct
e.g. 345,635 to $2 S F=350,000$
0.0060821 to 3SF $=0.0608$

HCF and LCM of 90 and 120 (Factor Tree \& Venn Diagram)
HCF is the product of common factors
LCM is the product of common factors and remaining factors.

HCF: $2 \times 3 \times 5$
LCM: $2^{3} \times 3^{2} \times 5$

Statistics and probability - Foundation

Averages

Mode: most common piece of data
Mean: Sum of the data \div total frequency

Median: order the data and find the middle value

Range: Highest value - lowest value

Frequency Polygons

1. Plot frequency at the mid-point
2. Join with straight lines

Weight $\boldsymbol{w}(\mathrm{kg})$	Frequency
$30 \leq w<50$	3
$50 \leq w<55$	7
$55 \leq w<75$	10
$75 \leq w<80$	6
$80 \leq w<100$	4

Venn Diagrams

Information given: 90 pupils were surveyed
52 said they owned a laptop. 45 said they owned a tablet.
23 said they owned both.

Probability Definitions

Total probability: adds to 1
Relative frequency: frequency \div total trials
Independent events: one event doesn't impact the other

Reading and Drawing Pie Charts

Hair colour	People
Blonde	8
Brown	12
Red	3
Grey	2
Black	6

> Find the fraction of the full circle.
> Size of Blonde sector: $\frac{8}{31} \times 360^{\circ}$

Expected outcomes

Expected outcome $=$ probability \times number of trials
E.g. A biased spinner is spun 800 times. The probabilities is lands on each colour is below. The probability of it landing on red is the same as the probability of it landing on green. How many times would you expect yellow to come up.

Result	Red	Green	Brown	Yellow
Probability		0.48	0.2	

$P(Y)=(1-0.48-0.2) \div 2=0.32 \div 2=0.16$

Expected yellow $=0.16 \times 800=128$

Averages from a frequency table

Mean: $\frac{\sum f w}{\sum f}$; where, w is the midpoint of the group.
Median group: find which group the $\frac{n+1}{2} t h$, value lies. Where, n is the total frequency.
E.G. in this table $51.5^{\text {th }}$ value which lies in group
$8<w \leq 12$ (using the cumulative frequency

Weight of box (w kg)	Frequency
$0<w \leqslant 4$	11
$4<w \leqslant 8$	16
$8<w \leqslant 12$	29
$12<w \leqslant 16$	26
$16<w \leqslant 20$	20

Tree diagrams

Multiply along the branches to find each probability.

1. Probability that a red counter is picked both times $P(R R)=\frac{2}{5} \times \frac{2}{5}=\frac{4}{25}$
2. Probability that the counters are different colours $=P(R B)+P(B R)=\frac{2}{5} \times \frac{3}{5}+\frac{3}{5} \times \frac{2}{5}=\frac{12}{25}$
