Algebra - Higher

Geometry and measure - Higher Part 1

Geometry and measure - Higher Part 2

Always use tracing paper.
Describe:

1. It's a rotation
2. Size of rotation in degrees
3. Orientations: clockwise or anticlockwise
4. Centre of rotation given as a coordinate (x, y)

Transformation - translation

$\operatorname{Vector}\binom{6}{-4} 6$ right, 4 down

Similar shapes

Same shape, different sides
The ratio of the lengths of corresponding sides are equal

Length scale factor $=x$

Area scale factor $=x^{2}$

Volume scale factor $=x^{3}$

Transformations - enlargement - describing:

1. It's an enlargement
2. The scale factor (if the image is smaller than the object the scale factor is fractional e.g. $1 / 2$)
3. The centre of enlargement given as a coordinate

Circles

Area $=\pi r^{2}$
Circumference $=\pi d$

Sector Area $=\frac{\theta}{360} \pi r^{2}$
Arc length $=\frac{\theta}{360} \pi d$

Pythagoras' Theorem

$$
a^{2}+b^{2}=c^{2}
$$

Only applies to right angled triangles.
Can be used to find the height of an isosceles triangle

Can be used to find the length distance petween two coordinates

Circle Theorems

Angle at the centre is twice the angle at the circumference

Opposite angles of a cyclic quadrilateral add up to 180).

Alternate segment theorem.

Tangents from an external point are equal in length.

The tangent to a circle is perpendicular $\left(90^{\circ}\right)$ to the radius

Number Ratio and Proportion - Higher Part 1

Estimate

Round each value to one significant figure

Standard form
 $a \times 10^{n}$, where $1 \leq a<10$

Reciprocal

Reciprocal of 7 is $\frac{1}{7}$, reciprocal of $\frac{2}{3}$ is $\frac{3}{2}$ etc

Sequences

Fibonacci sequence: $1,1,2,3,5,8,13,21$
Geometric Sequence: each term is multiplied but he same constant to get the next number.
E.g. $3,12,48,191, \ldots$. (x by 4 each time)

Simplifying Surds

Find a factor that is a square number

$$
\sqrt{96}=\sqrt{16 \times 6}=4 \sqrt{6}
$$

Manipulating surds

$$
\begin{gathered}
\sqrt{a b}=\sqrt{a} \times \sqrt{b} \\
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
\end{gathered}
$$

Rationalising Surds

Rationalise by removing any surds from the
denominator
E.G with surd.

$$
\frac{2 \sqrt{3}}{\sqrt{5}}=\frac{2 \sqrt{3} \times \sqrt{5}}{\sqrt{5} \times \sqrt{5}}=\frac{2 \sqrt{3 \times 5}}{\sqrt{5 \times 5}}=\frac{2 \sqrt{15}}{\sqrt{25}}=\frac{2 \sqrt{15}}{5}
$$

E.G with surd expressions multiply by top and bottom by the denominator with the opposite sign.

$$
\begin{gathered}
\frac{5}{3+\sqrt{2}}=\frac{5 \times(3-\sqrt{2})}{(3+\sqrt{2}) \times(3-\sqrt{2})}=\frac{5(3-\sqrt{2})}{9-\sqrt{4}} \\
=\frac{5(3-\sqrt{2})}{7}
\end{gathered}
$$

Recurring Decimals

Form two equations where the digits following the decimal point are the same, and therefore can be cancelled

Upper and lower bounds

Look at the value above and below for the same place value. LB and UB will be half way between these points
e.g. 17 rounded to the nearest integer

e.g. 24.6 roudned to one decimal place.

$$
\mathrm{LB}=24.55, \mathrm{UB}=24.65
$$

Fractions

Add and Subtract - ensure the fractions have the same denominator before adding numerators

$$
\frac{4}{5}-\frac{1}{3}=\frac{12}{15}-\frac{5}{15}=\frac{7}{15}
$$

Multiply - multiply numerators and denominators

$$
\frac{4}{5} \times \frac{1}{3}=\frac{4}{15}
$$

Divide - take reciprocal of the second fraction and then multiply the new numerators and denominators

$$
\frac{4}{5} \div \frac{1}{3}=\frac{4}{5} \times \frac{3}{1}=\frac{12}{5}=2 \frac{2}{5}
$$

Percentages

Finding percentages of an amount

$1 \% \quad \div 100$
$5 \% \div 20$
$20 \% \div 5$
$25 \% \div 4$
$50 \% \div 2$

Multipliers:

To find the multiplier for a percentage, divide by 100
Use multipliers on a calculator paper
e.g. 35% of $370=0.35 \times 370$

Increasing and decreasing a given amount

 Calculator:Orginal Amount x mutiplier $=$ new amount
Non-calculator: find the increase or decrease and add to the original amount

Finding percentage increase or decrease (profit/loss) value of increase/decrease

$$
\frac{\text { Increase/aecrease }}{\text { Original }} \times 100
$$

Writing an amount as a percentage of the original

$$
\frac{\text { Amount }}{\text { Original }} \times
$$

$$
\times 100
$$

Reverse Percentage - finding the original amount

$$
\text { Orginal Amount }=\frac{\text { New Amount }}{\text { multiplier }}
$$

Number Ratio and Proportion - Higher Part 2

Growth \& Decay / Compound interest

original amount \times multiplier ${ }^{\text {time }}$
Where the multiplier is the percentage, increase or decrease from 100\%, converted to a decimal.
e.g.
30% decrease is $70 \%=0.7$
30% increase is $130 \%=1.3$

Compound Units (rearrange as necessary)

Speed $=\frac{\text { Distance }}{\text { Time }}$
Area $=\frac{\text { Force }}{\text { Pressure }}$
Density $=\frac{\text { Mass }}{\text { Volume }}$

Product rule

If there are \boldsymbol{m} ways to do one thing and \boldsymbol{n} ways to do another, then there are $\boldsymbol{m} \times \boldsymbol{n}$ ways to do both

Index Laws

$$
\begin{gathered}
a^{n} \times a^{m}=a^{n+m} \\
a^{n} \div a^{m}=a^{n-m} \\
\left(a^{n}\right)^{m}=a^{n m} \\
a^{0}=1 \\
a^{-n}=\frac{1}{a^{n}} \\
a^{\frac{n}{m}}=\sqrt[m]{a^{n}}
\end{gathered}
$$

Dividing by decimals:

1. Write the calculation as a fraction
2. Form an equivalent fraction to makes integers (multiply by powers of 10)
3. Use short division (bus stop) to calculate
e.g. $460 \div 0.4=\frac{460}{0.4}=\frac{4600}{4}=1150$

Error Intervals

least possible value $\leq x$ < greatest possible value
e.g. A fence is 30 m long to the nearest 10 m .

$$
25 \mathrm{~m} \leq l<35 \mathrm{~m}
$$

Truncation

Truncation is a method of approximating a decimal number by dropping all decimal places past a certain point without rounding.
e.g. Truncate 3.14159265 to 4 decimal places.

$$
=3.1415
$$

Order of operations
Bracket
Indices
Division and Multiplication
Addition and Subtraction
Prime Factorisation

Conversions

10 millimetres $=1$ centimetre 15 minutes $=0.25$ hours
100 centimetres $=1$ metre 30 minutes $=0.5$
hours
1000 metres $=1$ kilometre $\quad 45$ minutes $=0.75$
hours
$1000 \mathrm{~cm}^{3}=1$ litre $\quad 1000 \mathrm{~g}=1$ kilogram
$1000 \mathrm{ml}=1$ litre $1000 \mathrm{~kg}=1$ tonne

Negative numbers

Adding and subtracting: (vertical number lines help)
$-3-5=-8$
$-3+5=2$
$-3-5=-3+5=2$
$-3-+5=-3-5=-8$
$-3+-5=-3-5=-8$
Multiplying and dividing:
Different signs - answer will be negative
+x-=-, -x+=-
Same signs - answer will be positive

- x - = +

Rounding to significant figures

Start from the first non-zero number and round as normal, but ensure the place value is correct
e.g. 345,635 to $2 S F=350,000$
0.0060821 to 3SF $=0.0608$

HCF and LCM of 90 and 120 (Factor Tree \& Venn Diagram) HCF is the product of common factors LCM is the product of common factors and remaining factors.

HCF: $2 \times 3 \times 5$
LCM: $2^{3} \times 3^{2} \times 5$

Frequency Polygons

1. Plot frequency at the mid-point
2. Join with straight lines

Weight $\boldsymbol{w}(\mathrm{kg})$	Frequency
$30 \leq w<50$	3
$50 \leq w<55$	7
$55 \leq w<75$	10
$75 \leq w<80$	6
$80 \leq w<100$	4

Histograms

$F D=$ Frequency density
$F D=\frac{\text { Frequency }}{\text { Class Width }}$

Venn Diagrams

Information given: 90 pupils were surveyed
52 said they owned a laptop.
45 said they owned a tablet.
23 said they owned
both.

Notation

A - all elements in A
A^{\prime} - all elements not in A
B - all elements in B
B^{\prime} - all elements not in B
$A \cup B$ - all the elements in A or B or both
$A \cap B$ - all the elements in both A and B

Cumulative Frequency Diagrams and Box Plots

Expected outcomes

Relative frequency: frequency \div total trials
Expected outcome $=$ probability \times number of trials
E.g. A biased spinner is spun 800 times. The probabilities is lands on each colour is below. The probability of it landing on red is the same as the probability of it landing on green. How many times would you expect yellow to come up.

Result	Red	Green	Brown	Yellow
Probability		0.48	0.2	

$$
P(Y)=(1-0.48-0.2) \div 2=0.32 \div 2=0.16
$$

Expected yellow $=0.16 \times 800=128$

Averages from a frequency table

Mean: $\frac{\sum f w}{\Sigma f}$; where, w is the midpoint of the group.

Median group: find which group the $\frac{n+1}{2} t h$, value lies. Where, n is the total frequency.
E.G. in this table $51.5^{\text {th }}$ value which lies in group $8<w \leq 12$ (using the cumulative frequency

Weight of box $(w$ kg)	Frequency
$0<w \leqslant 4$	11
$4<w \leqslant 8$	16
$8<w \leqslant 12$	29
$12<w \leqslant 16$	26
$16<w \leqslant 20$	20

Tree diagrams

Multiply along the branches to find each probability

1. Probability that a red counter is picked both times $P(R R)=\frac{2}{5} \times \frac{2}{5}=\frac{4}{25}$
2. Probability that the counters are different colours $=P(R B)+P(B R)=\frac{2}{5} \times \frac{3}{5}+\frac{3}{5} \times \frac{2}{5}=\frac{12}{25}$
