

## Required practical - Terminal velocity

You can investigate the effect of mass on terminal velocity by dropping cupcake cases. You can change the mass by adding more cupcake cases.

Drop from a fixed height and measure the time to fall.
Calculate the speed using speed = distance / time.
The speed increases as the mass increases because the weight is increasing.


Key process - Calculating mass, weight and gravity
You can calculate the weight of an object if you know its mass $(m)$ and the strength of the gravitational field that it is in (g)


## Knowledge Assessment

State the equation linking mass, weight and gravitational field strength.
Define the term 'weight', giving the unit.
Define the term ' non-contact force'
Define the term 'mass', giving the unit.

Define the term 'gravitational field strength', giving the unit.

Define the term 'field'
Gravitational force increases with mass, true or false?
Gravitational force increases with distance, true or false?
State the gravitational field strength on Earth.
State the gravitational field strength on the Moon.

## Knowledge Assessment ANSWERS

State the equation linking mass, weight and gravitational field strength.

Define the term 'weight', giving the unit.
Define the term ' non-contact force'
Define the term 'mass', giving the unit.
Define the term 'gravitational field strength', giving the unit.

Define the term 'field'
Gravitational force increases with mass, true or false?
Gravitational force increases with distance, true or false?
State the gravitational field strength on Earth.
State the gravitational field strength on the Moon.

True
Weight $=$ mass $\times$ gravitational field strength
The force of gravity on an object ( N ).
One that acts without direct contact.
The amount of matter in an object (kg).

The force due to gravity on $1 \mathrm{~kg}(\mathrm{~N} / \mathrm{kg})$.
The area where other objects feel a gravitational force.

False
$10 \mathrm{~N} / \mathrm{kg}$ (accept $9.8 \mathrm{~N} / \mathrm{kg}$ )
$1.6 \mathrm{~N} / \mathrm{kg}$

